Hypercovers and simplicial presheaves

نویسندگان

  • DANIEL DUGGER
  • DANIEL C. ISAKSEN
چکیده

We use hypercovers to study the homotopy theory of simplicial presheaves. The main result says that model structures for simplicial presheaves involving local weak equivalences can be constructed by localizing at the hypercovers. One consequence is that the fibrant objects can be explicitly described in terms of a hypercover descent condition. These ideas are central to constructing realization functors on the homotopy theory of schemes [DI1, Is]. We give a few other applications for this new description of the homotopy theory of simplicial presheaves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Acyclic Fibrations and the De Rham Complex

We reinterpret algebraic de Rham cohomology for a possibly singular complex variety X as sheaf cohomology in the site of smooth schemes over X with Voevodsky’s h-topology. Our results extend to the algebraic de Rham complex as well. Our main technique is to extend Čech cohomology of hypercovers to arbitrary local acyclic fibrations of simplicial presheaves.

متن کامل

The Verdier hypercovering theorem

to the morphism f ·p−1, is a bijection provided that X and Y are locally fibrant in the sense that all of their stalks are Kan complexes. Here, π(Z, Y ) denotes simplicial homotopy classes of maps, and the colimit is indexed over homotopy classes represented by hypercovers p : Z → X. A hypercover is a map which is a trivial fibration of simplicial sets in all stalks, and is therefore invertible...

متن کامل

Closed model categories for presheaves of simplicial groupoids and presheaves of 2-groupoids

We prove that the category of presheaves of simplicial groupoids and the category of presheaves of 2-groupoids have Quillen closed model structures. We also show that the homotopy categories associated to the two categories are equivalent to the homotopy categories of simplicial presheaves and homotopy 2-types, respectively.

متن کامل

Weak Equivalences of Simplicial Presheaves

Weak equivalences of simplicial presheaves are usually defined in terms of sheaves of homotopy groups. We give another characterization using relative-homotopy-liftings, and develop the tools necessary to prove that this agrees with the usual definition. From our lifting criteria we are able to prove some foundational (but new) results about the local homotopy theory of simplicial presheaves.

متن کامل

ON THE HOMOTOPY THEORY OF n-TYPES

We achieve a classification of n-types of simplicial presheaves in terms of (n− 1)-types of presheaves of simplicial groupoids. This can be viewed as a description of the homotopy theory of higher stacks. As a special case we obtain a good homotopy theory of (weak) higher groupoids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002